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The formation, maintenance, and re-
pair of biological tissues rely on the in-
teraction of cells with other cell types
and with their extracellular matrix [2,
3]. These cellular communications
can be bi-directional or multi-dimen-
sional and may occur at both macro-
and micro-scales. Depending on the
hypothesis of interest, co-culture
models are used to discern the indi-
vidual and collective effects of physi-
cal contact and soluble factors via
paracrine signaling [4].

The simplest co-culture system
that permits physical contact be-
tween cells consists of a mixed mono-
layer of the cell types of interest [5, 6].
This is achieved by combining the dif-
ferent cell suspensions at the desired
co-culture ratio prior to seeding [7]
(Fig. 1). The mixed monolayer model
maximizes local heterotypic interac-
tions, and can be used to control the
relative levels of heterotypic and ho-
motypic communication by altering
the seeding densities of each cell
type. Interpretation of mixed mono-
layer co-culture results must take into
account a possible dilution effect due
to mixed culture, as well as any meta-
bolic differences between cell types.

Moreover, the relative contribution of
each cell population to any observed
effects is not readily discernible in this
model. Cell-cell contact can also be
controlled by establishing physical
barriers, which are used to regulate

spatial and temporal cell seeding pat-
terns in co-culture (Fig. 1). The divider
may later be removed to permit cell
migration and controlled cell-cell con-
tact [6]. This model is advantageous
because it exercises greater control
over the extent of heterotypic and ho-
motypic interactions, while permit-
ting both physical contact and soluble
factor interactions. The temporary di-
vider system is, however, experimen-
tally more challenging, as a complete
seal between the individual cell com-
partments is required. Moreover, cell
response and soluble factor transport
in this model depends on the proper-
ties of the divider. 

In studies where paracrine inter-
action is of greater interest, a segre-
gated co-culture system may be es-

Heterotypic and homotypic cellular interactions are essential for biological
function, and co-culture models are versatile tools for investigating these cel-
lular interactions in vitro. Physiologically relevant co-culture models have
been used to elucidate the effects of cell-cell physical contact and/or secreted
factors, as well as the influence of substrate geometry and interaction scale
on cell response. Identifying the relative contribution of each cell population
to co-culture is often experimentally challenging for these cellular interactions
studies. In this issue of Biotechnology Journal, Hamilton et al. [1] report on a
 hydrogel-based co-culture system, that enables paracrine interactions. A
 simple and elegant method for enzymatic separation of cell populations post
co-culture is introduced, thereby enhancing the ease for post-culture analysis
of the effects of co-culture on individual cell populations.

Figure 1. Schematic of 2D and 3D culture systems used to evaluate cell-cell interactions.

https://dx.doi.org/10.1002/biot.201200200


396 © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

B
TJ

-C
O

M
M

EN
TA

R
Y

Biotechnology
Journal Biotechnol. J. 2013, 8, 395–396

tablished by first forming individual
cultures of each cell type, and later co-
culturing them in the same environ-
ment (Fig. 1). In contrast to the mixed
co-culture model, the primary advan-
tage of this system is that the individ-
ual response of each subpopulation of
cells can be analyzed; however, a po-
tential disadvantage of the segregat-
ed co-culture model is that physical
contact cannot be completely pre-
vented in the long term, and the mul-
ti-stage cell-seeding procedure is
cumbersome. The advent of cell cul-
ture membrane inserts reduced many
of the experimental difficulties associ-
ated with paracrine co-culture (Fig. 1).
This model is reproducible, with the
ability to identify effects of co-culture
on individual populations, although
the effects of soluble factors detected
are uni-directional. Moreover, exten-
sive cell growth can cover the pores of
the inserts, limiting cellular interac-
tions, which may result in an insignif-
icant co-culture response. Another
widely utilized method for determin-
ing soluble factor effects is through
conditioned media studies, during
which the culture media from one cell
type is introduced into the culture of
the second cell type [8] (Fig. 1). The
advantages of conditioned media in-
clude its simplicity in allowing for the
detection of any soluble factor-related
effects, along with the potential for
subsequent identification of these
factors in the co-culture media. An in-
herent limitation is the issue of nutri-
ent deficiency, as well as difficulty in
reproducing the optimal concentra-
tions and temporal distribution of
these secreted factors. 

It is emphasized that for these
aforementioned co-culture models, re-
gardless of the scale of interactions,
and whether the hypothesis tested
centers on cell-cell contact or para -
crine signaling, it is essential to be
able to separate cell types following
co-culture, in order to examine
changes in behavior for each popula-
tion individually. For paracrine signal-
ing studies, this is often accomplished
through segregation of cell popula-
tions using a barrier or conditioned
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media studies. For cell-cell contact
studies however, the process of sepa-
ration following co-culture in the mod-
els described above becomes more
complicated. Another area of interest
in co-culture is the need for 3D culture
models, which are physiological and
can take into consideration the contri-
bution of the extracellular matrix.
These 3D models for multi-culture al-
low for spatial control over cell distri-
bution and lead to biomimetic cell
templating [9]. These interactions can
be studied and controlled on the mi-
cro- and macro-scale, adding another
tier of sophistication to the culture
system [10].

In this issue, Hamilton et al. [1] de-
velop a novel 3D hydrogel-based co-
culture model, with applications in the
study of the effects of co-culture both
with and without cell-cell contact. With
this 3D system, it is possible to control
the spatial patterning and temporal
distribution of distinct cell populations,
and most importantly, achieve on-de-
mand separation of cell types through
the use of enzyme-degradable adhe-
sives. For example, layers of polyethyl-
ene glycol-diacrylate (PEGDA)-based
hydrogel were first joined together
with a chondroitin sulfate methacry-
late adhesive, and after culture, chon-
droitinase ABC solution was intro-
duced to enzymatically digest
away the adhesive and separate the
cell-laden hydrogel layers. Through a
series of proof-of-concept experiments,
the authors convincingly demonstrat-
ed the ability of this system to segre-
gate cell types while preserving cell
 viability. Furthermore, the 3D-layered
hydrogel system offers design flexi -
bility, in terms of both geometry and
structure. 

In summary, multi-scale and multi-
dimensional cellular interactions are
essential for organ homeostasis, repair
and regeneration. Biomimetic co-cul-
ture models such as those described
by Hamilton et al. [1] are insightful
tools for deciphering the relative con-
tributions of cell-cell contact and/or
soluble factors, in conjunction with
substrate geometry, as well as interac-
tion scale. 


